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Ensemble theory is used to describe arbitrary sequences of integers, whether formed by the decimals
of 7 or produced by a roulette or by any other means. Correlation coefficients of any range and order
are defined as Fourier transforms of the ensemble weights. Competing definitions of random sequences
are considered. Special attention is given to sequences of random numbers needed for Monte Carlo cal-
culations. Different recipes for those sequences lead to correlations that vary in range and order, but the
total amount of correlation is the same for all sequences of a given length (without internal periodicities).
For maximum-length sequences produced by linear algorithms, most correlation coefficients are zero,
but the remaining ones are of absolute value 1. In well-tempered sequences, these complete correlations
are of high order or of very long range. General conditions to be obeyed by random-number generators
are discussed and a qualitative method for comparing different recipes is given.

PACS number(s): 02.70.Lq, 02.50.Ng, 64.60.Cn, 75.40.Mg

I. INTRODUCTION

Random sequences are difficult to define. The
mathematical problems involved were examined by Von
Mises [1], Kolmogorov [2,3], Chaitin [4], Kac [5],
Martin-Lof [6,7], Kirschenmann [8], Van Lambalgen
[9,10], and many other authors. Random sequences are
easy to generate in a computer, except when needed for
reliable Monte Carlo simulations. This practical problem
was also widely discussed; here, only the work of Golomb
[11], Knuth [12], Marsaglia [13], Ripley [14], James [15],
L’Ecuyer [16], and Niederreiter [17] is mentioned. In
comparison, the connection between the two difficulties
has received little attention.

In the case of binary sequences [18-20], operational
definitions of randomness leading to reliable recipes for
random-number sequences could be based on ensemble
theory and on a hierarchy of correlation coefficients of
arbitrary range and order. A generalization of these
ideas is desirable, since many recipes for random-number
generation produce sequences of integers modulo m. The
present generalization finds its origin in statistical
mechanics, and is also related to complexity theory and
to the theory of multivariate distributions. Its first aim is
to attach a precise meaning to notions like randomness
and a truly random sequence. Several definitions are
needed to cope with different situations.

The generalization turns out to be closely related to the
Fourier analysis of linear-congruence sequences carried
out, many years ago, by Coveyou and MacPherson [21].
Their unified theory, which led to the spectral test that is
by now a standard technique for these sequences, foresha-
dows many of the present results, but details and context
differ. The emphasis of their paper is on numerical cri-
teria for special cases, whereas the main aim of the
present paper is to find a general approach to the prob-
lem of random-number generation in terms of qualitative
though operational conditions.

Such an approach is needed, since numerical tests are
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time consuming and yet inconclusive, the possible corre-
lations being too many for a complete check. Monte Car-
lo calculations need efficient algorithms that a priori are
reliable, but a compromise depending upon application
and available machinery is often unavoidable. A com-
bination of systematic and heuristic arguments may help
to find reasonable solutions.

II. ENSEMBLES AND CORRELATION
COEFFICIENTS

Consider a sequence 7{,7,, . . . , 7y of N integers modu-
lo m. The elements of this object sequence are the com-
ponents of a vector rEZY. The end points of the m¥
different vectors r form an N-dimensional cubic lattice,
which becomes a probability space by assigning to each
vertex r a probability p(r). These probabilities obey

p(r)=0, ¥ p(r)=1, (1

all r

and are also called ensemble weights. They define a gen-
eral ensemble of object sequences, which can be used to
calculate ensemble averages of functions of r. A natural
measure for the amount of randomness present in the en-
semble is the entropy

S(p(r))=—T p(r)log,p(r) . (2)

all r

The number of degrees of freedom that an ensemble al-
lows is defined by

n=S(p(r))/log,m , (3)

which in practice is taken to be an integer.

To discuss the stochastic properties of the sequence r
induced by the ensemble, it is convenient to use the auxi-
liary quantities
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which are generalizations of the parities =1 that served
as alternatives to the bits O and 1 in earlier papers on
binary sequences [18—-20]. They are similar to the spin
variables that occur in the g-state Potts model in statisti-
cal mechanics. If the ensemble is such that the »; are mu-
tually independent, the s; are too, and vice versa. Being
located on the unit circle, the s; are automatically nor-
malized, and the expected mean value, even of powers
and products of s;, is zero.

An arbitrary test vector kEZY is used to define the
correlation product

N
P(k,r)=]] s;'=exp

i=1

. (5)

27 k-r
m

The components k;, k,,...,ky of k are another se-
quence of N integers modulo m, the test sequence. The
hypercubic lattice of ZY serves a dual purpose, being
used as a correlation space also. The number of different
vectors k in this space is again m”. In analogy to the
spin correlation functions in statistical mechanics, the
complex correlation coefficients C(k) are defined as en-
semble averages of the correlation products,

C(k)=3 Pk, r)p(r)=T3 e/ mkip(r), (6)

all r all r

and turn out to be discrete Fourier transforms of the en-
semble weights, with values located on or in the unit cir-
cle: |C(k)| <1. The structure of values C(k) in correla-
tion space is the dual of the structure formed by the en-
semble weights p(r) in probability space. In crystallo-
graphic terms, the ensemble weights are scattering
strengths on a hypercubic lattice, and the correlation
coefficients are the resulting diffraction pattern on the
dual or reciprocal lattice.

Equation (6) is the discrete version of the characteristic
function of a multivariate distribution; upon expansion,
C(k) and InC(k) are found to be the generating functions
of the moments and cumulants of that distribution; see,
for instance, Van Kampen [22]. All information hidden
in moments and cumulants is contained in C(k), which is
a more practical quantity for the present purposes. The
complex correlation coefficients C(k), based on general
products of arbitrary powers of s;, differ from the usual
correlation coefficients, based on normalized products of
only two elements r; (from which mean values are sub-
tracted).

The value of C(k) in the origin, belonging to the test
vector k=0 that does not measure a true correlation, is
given by

C(0)=3 p(r)=1. (7)

all r

Inversion of the Fourier transform gives

p(r)=m_N z e—(2rri/m)k~rc(k) , (8)
all k

which for r=0 leads to the mean value, averaged over all
k:

(CK)=m~¥3 C(k)=p(0) . 9)

all k
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The transformation is norm conserving (Parseval’s

theorem), the second moment being given by

(Jc)D=m 3 |c®*=T [p(r)]*. (10)
all k all r

Equations (9) and (10) are conservation laws that charac-
terize the ensemble. Equation (9) is a weak law: usually,
the C(k) cancel one another and p(0) is zero in ensem-
bles for random sequences. Equation (10) is a stronger
law, giving

r=m™|Ck)*)=m" 3 [p(r)]? (11

all r

as measure for the total amount of correlation.

III. GAMBLING ENSEMBLE AND SINGULAR
ENSEMBLE

Consider the extreme case of the gambling ensemble, in
which all sequences r are equally probable. It is defined
by

pr)=m~¥N (12)

for all r, which factorizes into a product of probabilities
p(r;)=m ~! since the elements r; are independent. The
gambling ensemble contains no information, and Egs. (2)
and (3) give the maximal values S = Nln,m (complete ran-
domness) and n =N (independence of elements) for the
entropy and the number of degrees of freedom. Insertion
into Eq. (6) leads to

C(k)=8,, . (13)

While the ensemble weights are spread uniformly over
probability space, all correlation is concentrated in the
origin of correlation space. The quantities of Eqgs. (9) and
(10) are both equal to m ", and the total amount of
correlation of Eq. (11) attains the minimal value I'=1;
only the term with k=0, which does not measure a true
correlation, contributes. The property that all true corre-
lation coefficients vanish is unique for the gambling en-
semble: Eq. (12) follows from Egs. (7) and (13). When
randomness, in what will be called here the gambling
definition, is identified with the absence of correlations,
the use of the gambling ensemble is obligatory.

The opposite case of the gambling ensemble is the
singular ensemble defined by

p(r)=8, . . (14)

The Kronecker § indicates that only the single sequence
r’ is present in the ensemble. Complete information is
available, and the distribution in probability space is con-
centrated in one point. Insertion into Egs. (3) and (4)
gives minimal values S =0 and n =0 for the entropy and
for the number of degrees of freedom: there is no ran-
domness, and there are no arbitrary elements. Equation

(6) leads immediately to
C(k)=e(21ri/m)k-r” |C(k)|=1 . (15)

For a given object sequence r’ all test sequences k mea-
sure a complete correlation: in a fixed sequence, every-
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thing is correlated. Equation (9) reads

(Ck))=mN3 Ck)=5,,, (16)
all k

since r' contributes only when all elements are zero.
Equation (10) is easily verified for the singular ensemble.
The total amount of correlation has the maximum value
r=m".

The results obtained so far are both trivial and satisfac-
tory. When randomness is identified with maximal entro-
py, at least some conceptual problems are solved. How-
ever, neither of the two ensembles offers a good descrip-
tion of the stochastic properties of the pseudorandom se-
quences that are used in practice.

IV. SCANNING ENSEMBLE

For that purpose the scanning ensemble is used, in
which one object sequence r and its N —1 translated ver-
sions Tr all have the same weight

p(T'r)=N"1, j=0,...,N—1, (17

whereas all other sequences have weight zero. The
translation matrix T (with 1’s just above the diagonal and
in the lower left-hand corner, and 0’s everywhere else)
shifts the elements of r one position to the left. In proba-
bility space, T is a rotation around the main body diago-
nal of the hypercube; TV is the unit matrix. The scan-
ning ensemble amounts to averaging over the sequence r,
which is taken to be periodic:

riyy=r; foralli. (18)
The period N may be due to an intrinsic rule obeyed by
the sequence, or the cyclic condition is just added to
avoid boundary problems. To ensure that all sequences
in the ensemble differ, it is assumed that r does not con-
tain internal periodicities with a factor of N as period;
otherwise, that factor should replace N (which amounts
to having fewer sequences in the ensemble, each with a
larger weight). Overcorrelated sequences with internal
periods that are not a factor of N may be dismissed also.

Insertion of Eq. (17) into Eq. (2) gives S =log,N for the
entropy, much less than the value S=Nlog,m in the
gambling ensemble, but at least not zero as in the singular
ensemble. Insertion into Eq. (6) gives

1 N-—1

C(k) N > exp

@k-Tjr
j=0 mn

) (19)

describing a circular autocorrelation of the sequence (in
the sum over j one may replace k-T’r by T /k-r). Leav-
ing differences in notation and derivation aside, one finds,
after adding the limit N — o, that C(k) of Eq. (19) is
identical with the Fourier transform ¢(Q) used by
Coveyou and MacPherson [21] to analyze linear-
congruence sequences. The limit N — oo tries to take im-
mediate advantage of expected asymptotic properties, but
is confusing. The finite and discrete form of Eq. (19) is
preferred here.

Equations (9)—(11) give the following results for the
scanning ensemble, valid for all sequences of length N
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without internal periodicities:

- a1 _m"

(C(k))=0, {(|C(k)|*) N’ r N (20)
The mean over all k of C(k) is zero, and its second mo-
ment is small, but the total amount of correlation I is
huge, due to the large number m”" of different test se-
quences k. This makes numerical tests inconclusive. By
minimizing the correlations that a test happens to be sen-
sitive for, one may even select sequences in which more
harmful correlations are larger.

The number of degrees of freedom that agrees with
S =log,N is

n =log,N /log,m . 2n

A first step to avoid harmful correlations is to select
equidistributed sequences, defined by requiring that the
degrees of freedom are used to fit just all possible strings
of n integers mod m into the period N=m" (overlaps al-
lowed). Here this is called the equidistributing definition
of a random sequence. Equidistributed sequences, also
known as De Bruijn sequences, were called pseudoran-
dom in earlier papers [18,19].

The scanning ensemble for a De Bruijn sequence of N
integers mimics the gambling ensemble for strings of »n in-
tegers: all true correlation coefficients C(k) vanish for
test sequences in which nonzero elements are at most n
positions apart. Hence De Bruijn sequences are suitable
candidates for random-number generation; many recipes
for random numbers are based on them (or good imita-
tions). However, when all correlations are considered,
the permutation over the sequence of strings of size n be-
comes important: neighboring (nonoverlapping) strings
should be as different as can be.

Table I is a summary of the properties of the different
ensembles.

V. NORMAL BEHAVIOR

Henceforth only the scanning ensemble will be used.
Consider first the case that the following relation holds,
for a given combination of r and k but independent of j:

k-T'r=k-rmodm =y . 22)
For this special case, Eq. (19) gives
C(k)=e?m/m7 |C(k)|=1, (23)

meaning that k indicates a complete correlation in r. In
general, k-T/r varies with j, and contributions to C(k)
due to different j do appear at various places on the unit
circle, with |C(k)| <1 as a result; the larger N is, the
closer to the origin C(k) tends to be. For arbitrary object
sequences the distribution of C(k) around the origin,
which has to obey the mean and the second moment
given by Egs. (20), is expected to be a two-dimensional
Gaussian.

Consider the object sequence formed by N decimals of
7, to which the periodicity of Eq. (18) is added. For test
sequences k=(1,0, ...,0) and T ’k, each digit contrib-
utes its own root of unity to C(k); a value C(k)=0 is
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TABLE 1. Survey of ensemble properties. The values m ~¥ in the gambling ensemble for (C(k))
and (|C(k)|?) are due to k=0 only. In the singular ensemble, |C(k)|=1 holds for all k. The total
amount of correlation I' in the scanning ensemble is large for all sequences.

General Gambling Singular Scanning

Ensemble (all seq.) (all seq.) (r’ only) (r+transl.)
Number of sequences m¥ m¥ 1 N
Weight p(r) m~N S r N~!
Entropy S — 3 p(r)log,p(r) N log,m 0 log,N
Degrees of freedom n S /log,m N 0 log,N /log,m
(C(k)) p(0) m~N 80 0
(lcx)|*) S [p(r)]? m~N 1 N!
Total amount of correl. T’ m¥(|C(k)|?) 1 m¥ m¥/N

equivalent to an average value of about 4.5 for the digits.
Less simple test sequences give similar results. The nor-
mal behavior of the digits of 7 discussed, for instance, by
Pathria [23], Wagon [24], and Johnson and Leeming [25]
corresponds to a two-dimensional Gaussian distribution
in the unit circle for C(k). The Gaussian shape that
obeys Egs. (20) was verified numerically by Heringa [26],
who calculated C(k) for the first N=35, 10, and 20 digits
of 7 (using representative samples of k). Although
verification is more difficult for larger N, there is no room
for doubt that the Gaussian is the correct asymptotic
description.

This behavior of C(k) corresponds closely to intuitive
notions of randomness, and will be called the normal re-
gime. The sequences and the definition of randomness
implied are called normal too. As a version of the weak
law of large numbers, the normal regime is expected to
hold for the digits of most transcendental or irrational
numbers, and even to some extent for the digits of most
rational numbers (for large N, but not in an asymptotic
sense, because in this case N has to be small in compar-
ison with the periodicity of the decimals).

A similar situation was described by Kolmogorov [3]
and Chaitin [4] in terms of the complexity of a sequence,
which is the number of bits in the shortest algorithm gen-
erating the sequence. A sequence is then taken to be ran-
dom when its complexity equals its length in bits, the
shortest algorithm being the sequence itself (adding an
asymptotically irrelevant copying instruction). This will
be called the complexity definition of randomness.
Asymptotically, almost all sequences are complexity ran-
dom as well as normal, although most of them will never
be identified.

Sequences of which the elements can be computed are
not complexity random, and sequences produced by
linear algorithms are not even normal (see Sec. VII).
However, the combination of range and order as a mea-
sure for the amount of complication of a test sequence,
used below to control nonzero correlation coefficients, is
a modified form of complexity.

VI. RANGE AND ORDER OF CORRELATIONS

Monte Carlo results are misleading when correlations
hidden in the random numbers and in the simulated sys-

tem interfere constructively. The usual advice is to test
random-number generators in the context of their appli-
cation. When the nonzero correlation coefficients of the
object sequence from which the random numbers are tak-
en belong to very long or complicated test sequences, in-
terferences are a priori unlikely.

To specify these test sequences, two parameters are
needed, one for the length and one for the order of a test
sequence. A length parameter is provided by the range
A(k) or the size A(k), defined by

A(k)=Ak)log,m, AMk)=j—i+120, (24)

where A(k) serves to compare cases of different m, and
where j and i are the indices of k; and k;, the first and
last nonzero elements of k. For the trivial case k=0, one
has A(0)=0. Test sequences with k ;70 are called basic;
all nontrivial test sequences can be reduced to basic form
by translations that leave C(k) invariant. When only test
sequences of maximum size A are used, A acts as a win-
dow through which the object sequence is seen; it may
then be convenient to project the structures in Z[)
formed by ensemble weights and correlation coefficients
onto Z%, .

In the case of binary sequences [18—-20], the order pa-
rameter chosen was the number of bits equal to 1 in a test
sequence. An obvious choice for general m is to use the
number of factors in the product of Eq. (5). This is the
cased=11in

s (25)

where d =2 is another choice. To avoid that elements
larger than 1m do contribute more than their modular
complements, k; could be replaced by the Brillouin-zone
variable k/=min{k;,m —k;}. For m =2, all choices
agree with the earlier definition. The so-called city-block
distance g, is an integer order parameter, and the Eu-
clidean measure g, is identical to the quantity |Q| used
by Coveyou and MacPherson [21] in the spectral test and
by Ora and Jerry Percus [27] in an overall correlation
measure.
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To enable comparison between sequences with different
moduli the order parameter chosen (in a certain analogy
with complexity theory) is

N
gk)=3 H(k,), (26)

i=1

where H(k;) is the Hamming weight of k; (the number of
1I’s in its binary form), a quantity taken from code theory.
For m =2 also Eq. (26) agrees with the earlier definition.
Again, the Brillouin-zone variable k| =min{k;,m —k;}
instead of k; could lead to a more even-handed treatment
of complementary values, but this would be less simple
formally. The values of g(k) obey 0=g(k)=<A(k), and
are concentrated around +A(k). The number f(A,q) of
test sequences of range A or smaller and of order q is just
the binomial coefficient:

f(Aq)= [’;] . 27)

When joined together, the binary expansions of the ele-
ments k; form the bit pattern of k, which has a simple
structure when g(k) is small or close to A(k), the com-
plement of a small value. The combination of range and
order can be used as a measure for the degree of compli-
cation of k: when g(k) is large and close to the optimal
value JA(k), the bit pattern of k is usually complicated.
It is an incomplete measure, which does not exclude sim-
ple patterns like alternating bits O and 1, but it is a more
operational quantity than the complexity of k.

Nonzero correlation coefficients that belong to compli-
cated test sequences, of long range and of optimal Ham-
ming order, are assumed to be least harmful. A similar
specification, but in terms of g, instead of ¢, was given by
Coveyou and MacPherson [21].

VII. LINEAR PRODUCTION RULES

The attention is now limited to sequences produced by
the efficient linear production rules used in many Monte
Carlo calculations. Consider an object sequence r deter-
mined by the linear algorithm

n
ritn= 2 Kir;1;_1+cmodm , (28)

i=1

where the constant ¢ and the coefficients K; (with at least
K #0) are integers modm. From an initial condition or
state in the form of a seed of » integers 7y, . . ., r, all oth-
er elements of the sequence are found by iteration, start-
ing at j=1. A set of n elements 7;,...,r;,,_ is called
a temporary state of the generator, which together with
the state starting at j +n forms a pair of successive states.
When the period N is reached, the initial state is
recovered.

For a modulus like m =232 the elements #; can be used
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directly as random numbers in Monte Carlo simulations.
For smaller moduli a number of elements (for instance,
32 for m =2) must be combined. When needed for such a
combination or to compare sequences with different m,
all elements are thought to be replaced by their binary
representation. Problems that arise when m is not a
power of 2 are ignored, as well as ad hoc attempts to
enhance randomness by skipping or reshuffling parts of a
sequence, by using carry bits, or by other operations that
distract from a study of the direct consequences of Eq.
(28).

Many usual recipes for random-number generation are
special cases of Eq. (28). For n =1 the linear-congruence
rule results. The case ¢ =0 and n > 1 with all K; equal to
zero except K=K, =1 (with 1<i’'<n) is known as the
lagged-Fibonacci method; if more coefficients K; are 1 in-
stead of O, the Fibonacci rule with multiple lags results.
The lagged-Fibonacci method with m =2 is the
feedback-shiftregister rule for binary sequences, with two
or more feedback positions.

In the lagged-Fibonacci method one may also consider
the use of multiplication of two or more different ele-
ments of the sequence (instead of addition) in order to
find additional elements. Although there is some empiri-
cal evidence of the proper behavior of the resulting se-
quences, one should be aware of the possible occurrence
of regions of attraction in these nonlinear schemes (the
amount of nonlinearity is of course still smaller than in
the calculation of the decimals of 7). Since they are inev-
itably slower than the linear recipes included in Eq. (28)
and more difficult to analyze, they are not taken into ac-
count here.

For many different values of m and n, combinations of
values of K; and c¢ are known (or can be found by stan-
dard techniques) for which the period of the resulting se-
quence r is close to or equal to the maximum period
N=m?". Then r is almost or exactly a De Bruijn se-
quence, and the length n of the seed is equal to the num-
ber of degrees of freedom. For instance, maximum-
length sequences generated by shiftregisters with a primi-
tive trinomial as a characteristic function have periods
2"—1 (only a single O is missing); the difference from a
true De Bruijn sequence is negligible. Usually, the se-
quences considered below are assumed to be of maximum
length, at least approximately.

A De Bruijn sequence with n degrees of freedom, for
which all C(k) of size A(k) <n vanish, must have test se-
quences with C(k)70 for all sizes larger than n, other-
wise the period would be larger than m”". For linear De
Bruijn sequences, which are generated by a linear produc-
tion rule, a stronger result holds. Rewrite Eq. (28) as

R n
K-Th=3 Kir;j+(m—1r;, ,modm=m—c , (29)
i=1

which is valid for any j, where K is the basic test se-

quence of range A(K)=(n+1)log,m with |[C(K)|=1

given by
K=(K,,...,K,,m—1,0,...,0) . (30)

Equation (29) is identical to Eq. (22) for y=m —c¢ and
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k=K. The constant c¢ is often needed for maximum
length, but its contribution to the correlation product is
only a phase factor. Defining the first complete correla-
tion, the test sequence K is equivalent to the production
rule, which will also be indicated by K. The range and
order of K will always be denoted by A(K) and ¢(K) ex-
plicitly; they obey the relation

2<q(K)SA(K)=(n+1)log,m . 31)

The period of a maximum-length sequence generated by a
production rule K of range A(K) is given by N=m"
=2A(K) /m.

The production rule generates all other correlations.
Take a linear combination of K and its translated ver-
sions,

A—n
K'=3 b,T' /Kmodm , (32)
j=1
where T ! is a shift to the right over one position, and
where A obeys n+1=<A=N. The coefficients b; are in-
tegers modm. If at least one of them is not zero, K’ can
always be reduced to an equivalent basic test sequence of
size AM(K') = n +1, obeying Eq. (22) and indicating a com-
plete correlation |C(K')|=1. For A=n-+1 there are
m — 1 different choices for b,;70, and for A=n +2 there
are (m —1)? nonzero choices for b, and b,. Each time A
increases further, the number of sequences K' is multi-
plied by m. The number A(A) of basic test sequences K’
of size A=A(K') is

0 for 0O<A=<n
m—1 for A=n+1 (33)
(m—1Pm* "2 for A>n+2.

AN)=

Consider all completely correlated test sequences of size
A or smaller, with A=>n. Since a basic test sequence of
size A'<A corresponds to A—A'+1 test sequences of
maximum size A when its nonbasic translated versions
are included, the total number D(A) of complete correla-
tions of maximum size A generated by the production
rule is

A
D(M=3 AL)
A'=0

=1+(A—n)m—1)

A
+ 3 A=A +1D(m—1P2m*r " 2=m?r=n
A=n+2

(34)

where A(0)=1 is due to the trivial linear combination
K'=0.

For A=N the number of complete correlations is equal
to the total amount of correlation T=m®/N=m" " of
Eqgs. (20). Hence Eq. (34) counts all completely correlat-
ed test sequences K’ with |C(K')| =1, called the correlat-
ed test sequences for short; together, they form a com-
plete set of conserved quantities for production rule K.
All other m¥—m™ ™" test sequences, the uncorrelated
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ones, give C(k)=0. For linear De Bruijn sequences,
m™ ~" correlation coefficients are located on the unit cir-
cle, while the remaining ones are located in the origin.
Equations (20) are obeyed, but the contrast with normal
behavior could not be greater.

VIII. WELL-TEMPERED SEQUENCES

Linear sequences may still be reliable sources of ran-
dom numbers. Consider the cumulative distribution
d(A,q), defined as the number of correlated test se-
quences of range A or smaller and of order ¢ <A (the
more detailed distribution for each range A separately
does not change the argument, but leads to less simple
formulas). When the uncorrelated test sequences are in-
cluded, the distribution f(A,q) of Eq. (27) results. For
A=n one has d(A,q)=0, apart from d(A,0)=1 due to
C(0)=1. The first m —1 nontrivial contributions to
d(A,q) occur at A=n+1, due to the m —1 choices for
b;7#0 in Eq. (32). For A=n+1 the total number of
(complete) correlations of range A or smaller is

A _ 2A 1 A

S d(A,q)=DM)=m* "="—-==3 f(A,q), 35
q=0 N N q=0

in varying disguises. It is equal to m for A=A(K)
=(n+1)log,m and to m~/N when at A=N log,m the
full period is covered.

The order g =¢(K') is determined by interference be-
tween the bits of K; (including K, ,;=m —1) and b; in
Egs. (30) and (32). When A—n increases, the production
rule continues to feed additional correlations into
d(A,q), and g will increasingly behave as a stochastic
variable. It is convenient to split d(A,q) into a stochastic
and a deterministic part,

d(A,q)=d(A,q)+d,(A,q) . (36)
The stochastic part, defined by

= —-hn =i A
d,(A,g)=m " "f(A,q) N [q] R (37)

obeys Eq. (35) all by itself and is identical for all De
Bruijn sequences of the same period. For large A and
g =~1A, it is approximately equal to

_ Y —g-grn?

Novas e , (38)
where the mean and the variance of the binomial distri-
bution as well as its Gaussian approximation are given by
g=1iAand 02562—62=%A.

In general, d(A,q) itself is already expected to be al-
most similar to f(A,q), because every correlated test se-
quence is surrounded by many uncorrelated ones of al-
most the same order; the reverse is not true. The deter-
ministic part d;(A,q) defined by Egs. (36) and (37)
should be relatively small; its sum over g is zero. The
main problem is that the region in g occupied by d;(A,q)
may extend far beyond that of d (A,q). When ¢(K) is
small and when the coefficients b;70 chosen in Eq. (32)
are few and of small Hamming weights, the resulting

d,(A,q)=
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correlations occur at values of g where d (A, q) is zero [at
least initially, when A =(n +1), log,m is still small] and
must be accommodated in d;(A,q). Complementary cir-
cumstances when ¢(K) is close to A(K) have similar
effects (formally, this could be taken into account by us-
ing Brillouin-zone variables).

In an earlier paper [28] an exact result for binary
maximum-length sequences (m =2) was obtained for the
case in which A is equal to the full period (A=A
=N—1=2"—1). Itreads

d(N—1,q)
=71\7 [Nq—l]+%(—1)q(—1)q’/2 [%] , (39

with ¢’ =g for q even and ¢’ =g — 1 otherwise. For large
N the second term is but a small deterministic ripple on
the first one, which agrees with Eq. (37). However,
A=N —1is far beyond the relevant region n <A <<N.
The precise shape of d(A,q) depends on K and can
only be determined numerically. Figure 1 shows the re-
sult for the very short binary sequence of maximum
length generated by K=(1,1,0,0,1), with n=4, g(K)
=3, and A(K)=5. The deviations between d(A,q) and
Eq. (37) are small. Extension to less trivial production
rules is easy, but the steep increase with A of the number

N S S D I I A R
L o K=(1,1,0,0,1) —{ 400
A(K)=5
—  a(K)=3 L dAQ)) s
period 2"-1=15 —dg(A Q)

— 300

250

200

150

100

0 2 4 6 8 10 12 14

FIG. 1. The number d(A,q) of correlations of range A and
order g and its stochastic part d;(A,q)=(1/N )(;‘), for a binary
maximum-length sequence of period N=15 generated by
K=(1,1,0,0,1). When the production rule is of high order,
A(K)>>100, the stochastic regime shifts to irrelevantly large
values of A and gq.
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m*~" of completely correlated test sequences outruns
any computer capacity long before rules used in practice
come into sight. Exhaustive numerical checks of
random-number generators are impossible.

These results confirm that d;(A,q) is small compared
with d;(A,q). In general, the distribution for the order of
complete correlations in a linear De Bruijn sequence is
expected to obey Eq. (37), apart from small deviations.
For A > A(K), first consider d (A, q) separately, in which
most correlations are located in a narrow region around
the mean ¢ =%A. While A increases, the mean shifts to
higher orders, but the total number of correlations 24 /N
grows so fast that the low-order tail of the distribution
extends to even lower orders. As long as A remains
smaller than a certain value A’, all contributions to
d,(A,q) are at least of order q'; when A’ becomes small-
er. When A(K) is large, both ¢’ and A’ can be large
enough to assume that any interference with correlations
present in an application is excluded. See Sec. IX.

Most problems in linear algorithms are due to d;(A,q).
When ¢(K) is small, the tail of d(A,q) at low order lies
above d (A,q), especially at small values of A—n and ¢
where an adverse effect on the reliability of Monte Carlo
calculations is largest. Similar effects arise when ¢(K) is
close to A(K), due to excessive cancellations of bits 1 in
Eq. (32). To minimize these effects, K should have a
complicated bit pattern, of long range and of optimal or-
der ¢(K)=JA(K); then K feeds d(A,q) at values of g
near the maximum. When K has many elements of inter-
mediate Hamming weight, bit mixing starts in Eq. (30) in-
stead of having to wait for the coefficients b; in Eq. (32),
and a small number of coefficients ;70 in Eq. (32) will
not suffice to produce a correlated test sequence K’ of
low order ¢(K’). Hence all correlations that occur out-
side the region where the stochastic part is active are
then avoided.

Tentatively, a linear maximum-length sequence is a re-
liable source of random numbers when its production
rule K obeys three conditions:

A. the range A(K) is sufficiently large,

B. the order ¢(K) is comparable to JA(K),

C. the bit pattern of K is irregular and diffuse.

For condition A, the pragmatic estimate A(K)>>100
will be found below. Condition C implies that all parts of
K contribute more or less equally to g(K). Together, the
conditions form the well-tempered definition of random-
ness. The well-tempered sequences that obey them
should contain low-order correlations only at ranges
A>A'>>A(K).

Table II summarizes the different definitions of ran-
domness and the resulting properties of C (k). Since con-
dition C amounts to requiring the bit pattern of K to be
random, the well-tempered definition is to some extent
circular. A certain circularity is inherent to the subject,
and can be traced back, as was argued in an earlier paper
[18], to the seminal work of Von Mises [1]. Some of the
circularity is removed by conditions A and B. Moreover,
condition C refers to the production rule and is less
stringent and easier to check than a condition of random-
ness applied to the sequence itself.
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TABLE II.

Definitions of randomness and corresponding properties of C(k).
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Normal and

complexity-random sequences are similar, but not equivalent. Well-tempered sequences are a special
case of equidistributed sequences, for which all correlations are expected to be located in the stochastic

region, at large values for range and order.

Definitions Correlation coefficients
Gambling No true correlations: C(k)=0 for k#0
Equidistributing C(k)=0 for 0<A(k)=<nlog,m
Normal Gaussian distribution of C(k) in unit circle
Complexity Unspecified (but often normal)

Well-tempered

C(k)=0 for 0<A(k)<A’ and 0<gq(k)<gq’

IX. BIT-MIXING PROCESS

The conditions are neither sharp nor independent, and
a mixture of bits and arguments is needed to show their
practical meaning. First consider condition A, the im-
portance of which has of course been generally recog-
nized; from an asymptotic point of view, all notions of
randomness improve. In the present terminology, condi-
tion A together with maximum length is desirable be-
cause correlations of range A < A(K) are absent, and be-
cause the number 22 /N of complete correlations of max-
imum range A for A > A(K) decreases when N =24KX) /py,
increases, as Eq. (35) shows.

Both properties are, however, based on averaging
correlation products over a full period. In practice, only
relatively small subsequences are used; the larger A(K)
is, the more so. For subsequences of size N’ <<N, the
relevant quantities are the subsequence coefficients, in
which the correlation products of Eq. (5) are averaged
over a part of the sequence only [in the scanning ensem-
ble needed for the averaging, the periodicity of Eq. (18) is
maintained, using N’ instead of N as period]. The
behavior of subsequence coefficients, even for A < A(K),
is somewhere between the normal regime of Sec. V and
the opposite regime described at the end of Sec. VII, and
depends on temporary states. Thus maximum-length se-
quences seem to lose their advantage, and condition A
seems to be self-defeating.

Nevertheless, maximum length (apart from small devi-
ations) as well as condition A remain recommendable.
The decay of subsequence averages to their full-period
values will not improve when the probability space from
which successive temporary states are sampled is much
smaller than allowed by the available degrees of freedom.
The relative influence of quasistationary or imperfect res-
onant eigenstates of the production rule, states that are
often characterized by containing many bits of some
kinds of internal symmetries, is smaller when the proba-
bility space is larger. Whether a given generator is sam-
pling this space effectively enough to ignore memory
effects altogether, that problem is still to be discussed.
First, condition A must be made more precise.

If the decay is fast enough, test sequences K’ with the
full-period value |C(K’)|=1 for A(K')>A(K) are the
main cause of troubles. Most of these belong to d (A,q),
and can be made harmless by specifying what sufficiently
large means in condition A. All correlations in d (A,q)
are of order g(K')=gq’, at least when A(K’) is below the

critical value A’. When ¢’ is large enough, these stochas-
tic correlations are irrelevant for most applications. The
value g’ is the order at which, for the given range
A’ > A(K), the left tail of d,(A’,q) in Eq. (37) is of magni-
tude 1; it is a crude estimate for the lowest order of the
correlations present in the stochastic part. The resulting
relation is
At ~m"=N, (40)
q''(A'—q')
which leads to A’ =26, 2%, or 215, respectively, for N =23,
2% or 2'28 when the arbitrary value ¢’ =10 is adopted;
only the magnitude of the exponents matters. Since A’
must be divided by the number of bits (say, 32) of one
random number to see how many random numbers in a
row can be assumed to be free of correlations of order
below g’, condition (a) boils down to N=~2'® as a
minimum, or A(K)=log,(Nm)>>100. For instance,
linear-congruence sequences with m =232 appear to be
unreliable sources of random numbers, at least for
demanding tasks; as is easily verified, correlations of or-
der ¢’=10 are likely already to be present in two succes-
sive elements. True, the lowest order of correlations
tolerable in applications is a vague notion, and not all
correlations are detrimental, but ¢’=10 is not an exces-
sive value. For A> A’, more correlations of order ¢’ and
below will turn up soon. Since arguments based on the
tail of a Gaussian are risky, condition A implies that ex-
tensive Monte Carlo calculations need values of A(K) far
beyond 100 to be reliable.

The remaining two questions, whether d;(A,q) is
indeed harmless and whether the decay to full-period
values of the correlation coefficients is fast enough, are
directly related: low-order contributions to d;(A,q) that
arrive early, at rather small values of A— A(K)> 0, indi-
cate that the bit-mixing process over the range A is too
slow. Conditions B and C try to solve both problems by
requiring K to be sufficiently complicated to avoid early
low-order correlations; then successive temporary states
are sufficiently independent to sample the large probabili-
ty space that is effectively provided by condition A.
Ideally, the balanced amounts of bits O and 1 required by
condition B are scattered at random all over the bit pat-
tern of K.

Condition B is not very strict: if ¢g(K) is only rather
close to the optimal value JA(K), the back-to-normal
process of bit mixing dictated by K will usually only lead
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to orders near the maximum of the stochastic regime. In-
terference effects that give rise to early correlations of
low order, due to interference between different parts of
the bit pattern of K, are not completely excluded, but
they are unlikely. It is reasonable to suppose that the
deterministic deviations are completely absorbed by
d,(A,q) when q(K)=~1A(K)>100 holds, together with
condition C.

Obviously, condition C is not very strict either, in spite
of being rather important. Sharp conditions do not exist;
the quality of random numbers improves only gradually
with that of the production rule, while the desirable qual-
ity depends upon applications and increases with time.

X. NUMERICAL TESTS

The above reasoning is very schematic. To check it,
only numerical methods are available. Unfortunately,
they require A(K) to be so small that even condition A is
not obeyed, while the whole argument depends on asymp-
totic considerations. A complete study of d;(A,q) is like
looking for a needle in a haystack. Numerical checks of
the stochastic behavior of the order of complete correla-
tions are as unsatisfactory as for the normal behavior of
the decimals of 7.

This does not imply that they are not needed. Numeri-
cal studies of d(A,gq) for different production rules would
be worthwhile, even when, at small values of A(K), only
a trend could become clear. The reduction of memory
effects in temporary states due to conditions B and C is
another interesting topic. For well-tempered sequences
the decay of subsequence coefficients to full-period values
(0 or 1) should be fast, independent of initial conditions.
In particular, the decay from heavily biased or otherwise
regular initial conditions would deserve attention.

The usual tests for random-number generators are
designed to detect early correlations of low order in one
way or another, often intuitively and without using an or-
der parameter. At best, only indirect information about
d(A,q) is obtained. The spectral test for linear-
congruence sequences is closest to the present approach
and deserves special attention.

In this test, the projections onto Z* are studied for the
structures in ZY formed by T"r (for all j) and by all linear
combinations K’ of K, where r is the sequence generated
by K; see Eqgs. (28)-(32) for details. The projections are
dual hyper-rhombohedral sublattices of Z% . The spectral
test verifies whether these sublattices cover Z uniform-
ly; it requires that the shortest distance between nearest
hyperplanes, as given by the inverse of the Euclidean or-
der parameter g, of Eq. (25), is sufficiently large. Al-
though stated in terms of g, rather than g, the spectral
test is similar to the demand that the tail of d(A,q) is
zero for g <q' and A <A’. Indeed, at the end of their pa-
per, Coveyou and MacPherson [21] also asked attention
for the binary code of the production rule.

In the past, the use of the spectral test has often been
limited to small values of A, but recently L’Ecuyer and
Couture [29] developed efficient programming techniques
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to study very large values like A=~30. Perhaps these tech-
niques can also be used to study a presumably Gaussian
regime for g,, or, after adaptations, to find the lowest
values of ¢ at which d(A,q) differs from zero for a given
value of A> A(K).

Many other tests are found in the reviews cited above
[11-17]; the information on correlations given by them
is usually indirect. Recently, application specific tests
were developed by Vattulainen, and co-workers [30-32].
The application involved is the Ising model of statistical
mechanics, which, due to its known exact results and sui-
tability for large-scale Monte Carlo simulations, was used
as a testing ground in many other papers [33-37]. How-
ever, application tests move the unavoidable correlations
only out of sight, to places where they are able to disturb
the next application.

When random numbers are needed, the many recipes,
tests, and rumors make it difficult to choose and to strike
a balance between reliability and efficiency. Conditions
A, B, and C offer a qualitative guideline. The examples in
Sec. XI may indicate how they can be applied.

XI. COMPARISON OF LINEAR RULES

The familiar production rule for linear-congruence se-
quences,

ri+1=K,r;+cmodm , (41)

is equivalent to K=(K,K,=m —1,0,...,0). The size
and maximum-length period, respectively, are
AMK)=n+1=2 and N=m. A once popular choice,
which together with similar ones has fallen into disrepute
[15],1is

m=2—1, K,=16807, ¢=0, 42)

with range A(K)~62 and order ¢q(K)=37. Condition B
is obeyed, though at the cost of the unbalanced bit pat-
tern of K hiding behind the Hamming weights H(K;)=7
and H(K,)=30. Condition C is not obeyed. The value
H(K, )=H(m —1) is a handicap for rules with small n
and with m close to a large power of 2; the Brillouin-zone
variable K, . ; would emphasize this effect. Condition A
is also violated: A(K)=62 is not large enough to exclude
early low-order correlations of the stochastic regime.
These correlations are a plausible origin of the poor lat-
tice structures that caused the decline of recipes based on
moduli like m =23! or 232,

An example of a lagged-Fibonacci rule is the subtract-
with-borrow generator suggested by Marsaglia, Nara-
simhan, and Zaman [38],

rj+43=—rj+r; 13 —c;mod(2%2—5) . 43)

This amounts to K=(K;=m —1, K,, =1, Kyu=m—1),
skipping zeros. The carry bit ¢;=0or 1 and the —5inm
are needed to ensure the maximum length m"~232%4,
One finds A(K)=1400. Condition A seems to be obeyed,
but this value is too flattering. The carry bit and the —5
contribute little to bit mixing, and the flow in probability

space spirals too slowly away from the one for the case
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m =232 without carry bit, which has maximum length
m2"=2", For q(K) one finds 61, not optimal but rather
large. However, also ¢(K)=61 is too flattering: the bit
pattern of K (two large blocks of 1’s separated by many
0’s and a single 1 in the middle) is too simple for an
efficient bit mixing; the use of Brillouin-zone variables
would emphasize this. Conditions B and C are not met.
These criticisms agree with the poor lattice structure
found by Couture and L’Ecuyer [39] for Eq. (43). To-
gether with subtract-with-borrow recipes, the related
add-with-carry recipes are also unreliable.

Marsaglia, Narasimhan, and Zaman [38] suggest com-
bining Eq. (43) with r;=r/_, —c’mod2**, where ¢’ is a
constant, into r;'=r;—r; mod232. It is easily verified,
however, that most of the added complication ends up,
together with ¢’, in the phase factor y of Egs. (22) and
(23), where it does not change the correlation properties.
Couture and L’Ecuyer [39] showed that the lattice struc-
ture of r;’ is similar to the one for r;.

Shiftregister generators are based on the production
rule

n
ian=1+3 Kiriy;_ymod2 , (44)
i=2

which is equivalent to K=(K;=1,K,,...,K,,K,+;
=1), with K;=0 or 1 for 2=<i <n. The same production
rule can also be defined by means of the characteristic po-
lynomial

R({i},n)=1+ 3 x/+x", (45)
JEli

where {i} is the set of indices 0 <i <n for which K; , ;=1
holds. When the polynomial is primitive, the sequence
has maximum length. See Golomb [11] for details.

A simple example is the two-bit feedback shiftregister
rule defined by the primitive trinomial

R(103,250)=14x 1034 x250 (46)

on which the recipe of Kirkpatrick and Stoll [40] is
based. This recipe, in which each bit of the random num-
bers is taken from a widely different subsequence, proved
to be unreliable in applications [34-37]. The range and
order are A(K)=251 and ¢q(K)=3, which means that
condition A is obeyed while conditions B and C are
strongly violated. In addition, the third-order correla-
tions are present in each bit of the random numbers. Be-
cause of the many early warnings against shiftregister se-
quences based on trinomials, the recipe should never have
been used.

Shiftregister sequences are still attractive, due to their
binary character. Primitive polynomials of degree
n >>100 and of optimal order would be reliable recipes,
but they are difficult to find (and difficult to implement).
The alternative suggested in earlier papers [18,19] is to
use reducible polynomials that are a product of M primi-
tive trinomials,

M
Ry ({i;n; =TT R(j,n;) . (47)
j=1
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The elements of the resulting sequence are the mod-2 sum
of the elements of the sequences produced by the indivi-
dual trinomials. When the periods of the individual se-
quences have no factor in common, their product is the
period of the resulting sequence; when all n; are large
enough, the difference from maximum length is negligi-
ble. A further justification is found in an earlier paper
[20]. The combined Tausworthe generators that were
suggested by Tezuka and L’Ecuyer [41] are equivalent to
Eq. (47).

Preliminary results of Monte Carlo simulations of the
Ising model obtained by Shchur [42] and a series of tests
carried out by Berdnikov and Turtia [43] show that con-
siderable improvements above the use of a single trinomi-
al occur already for M =2, for which the order of the re-
sulting production rule (the number of terms in R,,) is at
most 9. For the most demanding Monte Carlo calcula-
tions this is not sufficient, but M =8, with q(K)=38, is
probably excessive. The following examples for the inter-
mediate cases M =3 and 4 are given for further orienta-
tion.

In an extensive search for reliable and efficient recipes
of this kind the following example for M =3 was given by
L’Ecuyer [44]:

R3(3,28;2,29;13,31)=(1+x3+xB)(1+x2+x%)
X(1+xB34x3) . (48)

The degree of the polynomial is n =3 ;n; =88, and the
range is A(K)=89. Since mod-2 cancellations due to
double products are absent, the order, or the number of
terms in the polynomial, is q(K)=27; this is slightly
below optimal, but the bit pattern of K is found to be
rather irregular. However, the range A(K)=289 is too
small to conclude that condition A is obeyed convincing-
ly.

For the case M =4 in Eq. (47), L’Ecuyer [44] found
many different rules, satisfying additional conditions. All
these rules (which are not explicitly given) have the same
range, A(K)=114, which seems not yet large enough to
obey condition A without hesitation. Also, at this value
for the range, most polynomials with M =4 will not con-
tain the maximum number 3¥=81 of terms possible, due
to accidental cancellations; the available degrees of free-
dom are not sufficient. When combined with a somewhat
larger range, however, the value M =4 could serve to set
a minimum standard. As such, the following polynomial
could be used:

R,=(1+x°+x"")(14+xB+x3)(1+x¥+x%)
X(1+x B3 +x17) 49)

All the trinomials are primitive and have a Mersenne ex-
ponent as degree. The range is A(K)=1+3 ;n;=265
and, since cancellations are absent, the order is
q(K)=81. This is below optimal, but at the given value
of the range there is no reason to worry: the stochastic
regime, centered around g =132, is far enough away to
avoid early low-order correlations, and it will attract the
deterministic contributions very effectively, since the bit
pattern of K is highly irregular (as is found when the po-



5644

lynomial R, is calculated explicitly). The flow in proba-
bility space will never be parallel to one of the orthogonal
subspaces defined by the trinomials.

Equation (49) is far from unique. Other combinations
(of at least similar range and order) may be more efficient.
For instance, due to its small degree the first factor in Eq.
(49) may cause problems in implementation, but it can be
replaced by any primitive trinomial taken from the lists
cited below. In general, the range and order of the pro-
duction rule K defined by the polynomial R,, of Eq. (47)
are given by

A(K)~1+z n

ji=1

g(K)=~min(3%, IA(K)), (50)

where occasional cancellations in R,, may prevent the or-
der from reaching the maximum value 3%, especially
when this is larger than 2A(K). A list of primitive trino-
mials with a Mersenne exponent as degree was given by
Zierler [45]; recently, it was extended by Kurita and
Matsumoto [46] and by Heringa, Blote, and Compagner
[47] up to Mersenne exponent 132 049. When M trinomi-
als of different degree are taken from these lists, the
periods are Mersenne primes and have no factors in com-
mon, and the ~3M terms in R,, are uniformly scattered
over the available degrees of freedom. Primitive trinomi-
als of which the degree is not a Mersenne exponent were
listed by Zierler and Brillhart [48], up to degree 1000;
these can also be used as factors in R,,, as long as the
maximum-length periods involved do not share factors.

Figure 2 is a plot of order versus range for the different
examples. The reader is invited to put his own preferred
recipe on the map.

XII. CONCLUSIONS

Ensemble theory and general correlation coefficients
are suitable instruments for discussing random-number
generation. Any quest for a truly random sequence is
bound to fail, since the total amount of correlation is con-
served. Nonlinear recipes, leading to a normal behavior
of the correlation coefficients in the unit circle, are closest
to intuitive notions of randomness.

For the more efficient linear recipes all correlations are
complete and consist of linear combinations of the pro-
duction rule. The order of these correlations is approxi-
mately Gaussian distributed. A few general conditions
for the production rule suffice to ensure that the sequence
is well tempered: correlations of short range and low or-
der are probably absent. In particular, the order of the
production rule should obey the lower bound
q(K)=~1A(K)>100.

A promising alternative for the order parameter g,
which is not a complete measure for the amount of com-
plication and which also lacks the symmetry of a
Brillouin-zone variable, is a local entropy, based on the
frequencies with which different strings of a given num-
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FIG. 2. Values of q(K) for some typical production rules K
are compared with the optimal value ¢(K)=~ +A(K). Question
marks refer to cases with misleading values of A(K) or g(K);
see text. A lower bound for reliable random-number generation
by means of maximum-length production rules K is
q(K)z%A(K)> 100. The open triangle indicates a minimum
standard.

ber of elements occur in a subsequence. A frequency-
based entropy of the bit pattern of a production rule leads
to a measure of irregularity that would remove any circu-
larity from the conclusion that random sequences are
generated by irregular production rules.

In some cases, adding a single element 1 to a binary
maximum-length sequence of period N of which the first
element is also 1, one finds the bit pattern of a production
rule for a maximum-length sequence of period 2¥—1.
Since the frequency-based entropy of maximum-length
sequences (for strings of size n =log,N) is maximal, one
may wonder whether iteration of this process would lead
to ever more random recipes and sequences, of exponen-
tially increasing ranges and periods.

In any case, entropy should be an essential element of a
general theory for random sequences.
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